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Abstract
• Introduce a novel uncoupled regression problem with pairwise comparison data.
• Propose new empirical risk minimization methods to solve the problem.
• Propose two estimators for a risk for general marginal target distributions.

Problem Setting
Motivating Example� �

Sensitive Data:
• e.g. Salary, Number of crimes committed before,...
• People won’t give an explicit label.
• Containing sensitive data leads to the risk of security breach.
Goal: To build a prediction model from marginal distribution of sensitive data� �
Uncoupled Regression� �

Ordinary Regression:
• Target Y generated from feature X as Y = f (X) + ε.
• Learn a model f̂ from coupled data DX,Y = {(xi, yi)}
generated from joint distribution PX,Y .

Uncoupled Regression:
• Unlabeled data DX = {xi} generated from distribution PX(x) =

∫
PX,Y (x, y)dy.

• Target DY = {yi} generated from marginal distribution PY (y) =
∫
PX,Y (x, y)dx.

• We try to learn a model f̂ to predict Y from X.
Since no correspondence in DX and DY ,

problem is ill-posed without any further assumption.� �
Pairwise Comparison Data� �

Difficult to get sensitive data but easier to get their order.
• People might be willing to give order information.

Pairwise Comparison Data DR = {x+
i ,x−i }

• Consists of pairs of features {x+
i ,x−i } such that

y(x+
i ) > y(x−i ),

where y(x+
i ), y(x−i ) are the target values for x+

i ,x−i , respectively.
• Generation Process:

1 Generate two samples (X, Y ), (X′, Y ′) from joint distribution PX,Y .
2 If Y ≥ Y ′, X+ = X and X− = X′. If not, the opposite holds.

• Let PX+, PX− be the distributions of each comparison data.� �
Problem� �

Learn a model f̂ from Unlabeled data DX, Target values DY , and Comparative Data DR� �

Related Work
[Carpentier and Schlueter, 2016]� �

Uncoupled regression with one-dimensional features and monotonic target function f .
• Requires features to be one-dimensional and target function f to be monotonic.
• Involves complex optimization in learning.� �
Our Problem� �
• Applicable to features with multi-dimensions and non-monotonic f .
• Easy to implement. (Can be reduced to minimization of a convex function.)� �

Algorithm
Empirical Risk Minimization Principle

• Construct an unbiased estimator of risk (e.g. l2-risk) from coupled data.
• Minimize the unbiased risk estimator to learn a model f̂ .

Distribution of Comparison Data
Lemma Let FY be the cumulative distribution function of Y . Then,

EX+[f (X+)] = 2EX,Y [FY (Y )f (X)],
EX−[f (X−)] = 2EX,Y [(1− FY (Y ))f (X)],

Therefore, if FY (y) = y (i.e. marginal distribution PY is uniform on [0, 1]),
EX,Y [(Y − f (X))2] = EY [Y 2] + EX[(f (X))2]− 2EX,Y [Y f (X)]

= EY [Y 2] + EX[(f (X))2]− EX+[f (X+)]
Unbiased←−−−− EY [Y 2] + 1

|DX|
∑

xi∈DX

(f (xi))2 − 1
|DR|

∑
(x+

i ,x
−
i )∈DR

f (x+
i )

• EY [Y 2] does not depend on f and can be ignored in optimization.
• {x−i } can be used for variance reduction.
• However, we cannot construct unbiased estimators for all marginal distributions.
→ Propose two methods to construct estimators with small bias.

Risk Approximation Approach
Main Idea� �

Approximate the expectation EX,Y [Y f (X)]
by the linear combination w1EX+[f (X+)] + w2EX−[f (X−)], w1, w2 ∈ R.� �

Theorem Let f̂RA be the minimizer of

EY [Y 2] + 1
|DX|

∑
xi∈DX

(f (xi))2 − 1
|DR|

∑
(x+

i ,x
−
i )∈DR

(
w1f (x+

i ) + w2f (x−i )
)
. (1)

Then, with an adequate condition, with probability 1− δ,

R(f̂RA) ≤ R(f ) + O

√log 1/δ
nU

 + O

√log 1/δ
nR

 + Err(w1, w2)

holds, where R is l2-risk, FY is the CDF of Y and Err is defined as
Err(w1, w2) = EY [|Y − w1FY (Y )− w2(1− FY (Y ))|].

• When marginal distribution PY is uniform, estimator (1) is unbiased for R.
• In this case, Err = 0 with (w1, w2) = (1, 0).

• Can be generalized to any risk defined based on Bregman divergence.
• See the paper for the detail.

Referece
• A. Carpentier and T. Schlueter. Learning relationships between data obtained independently. In Proceedings of the 19th

International Conference on Artificial Intelligence and Statistics, 2016.

Target Transformation Approach
Main Idea� �

Transform target Y to FY (Y ), and minimize the risk on transformed variable:
EX,Y [(FY (Y )− FY (f (X)))2].

Note, marginal distribution of FY (Y ) is uniform on [0, 1].� �
Theorem With an appropriate condition, the minimizer f̂TT of

EY [Y 2] +
nU∑
i=1

(FY (f (xi)))2 −
nR∑
i=1

FY (f (x+
i )) (2)

satisfies

R(f̂TT) ≤ R(f ) + O

√log 1/δ
nU

 + O

√log 1/δ
nR

 + ∆TT

with probability 1− δ, where R is l2-risk.

• When marginal is uniform, estimator (2) is unbiased for R, since FY (y) = y.
• ∆TT depends on the shape of PY and noise level.
• The theorem only holds for l2-risks.

Experiments
Settings
• Used benchmark datasets from the UCI repository.
• Used original features as unlabeled data and sampled 5000 pairs of comparison data.
• Learned linear models and predicted the target value for unlabelled data.

Methods to be compared
• Linear Regression using fully labeled ordinary coupled data.
• Train SVMRank using pairwise comparison data, predict ranking, and predict value by

f̂ (x) = F−1
Y

(
n̂(x)
nU

)
,

where n̂(x) is the predicted rank in the data.

Results

Supervised Regression Uncoupled Regression
Dataset LR SVMRank RA TT
housing 24.5(5.0) 110.3(29.5) 29.5(6.9) 22.5(6.2)
diabetes 3041.9(219.8) 8575.9(883.1) 3087.3(256.3) 3127.3(278.8)
airfoil 23.3(2.2) 62.1(7.6) 23.7(2.0) 22.7(2.2)

concrete 109.5(13.3) 322.9(45.8) 111.7(13.2) 139.1(17.9)
powerplant 20.6(0.9) 372.2(34.8) 21.8(1.1) 22.0(1.0)

mpg 12.1(2.04) 125(15.1) 12.8(2.16) 10.3(2.08)
redwine 0.412(0.0361) 1.28(0.112) 0.442(0.0473) 0.466(0.0412)

whitewine 0.574(0.0325) 1.58(0.0691) 0.597(0.0382) 0.644(0.0414)
abalone 5.05(0.375) 20.9(1.44) 5.26(0.372) 5.54(0.424)

Better than SVMRank, and may be better than ordinal supervised learning


