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Abstract

- Dueling Bandit: The bandit problem where the best arm is defined by pairwise comparison.

- Qualitative Feedback: The feedback that can only be compared. (See problem setting.)

- Formulate a new multi-armed bandit problem that handles qualitative feedback.
- Propose algorithms reduce the same regret as the dueling bandits without explicit comparisons.
- Show the superiority of proposed algorithms theoretically and experimentally.

Problem Setting

- Quantitative Feedback and Qualitative Feedback N
Quantitative Feedback Qualitative Feedback

Only qualitative feedback is available in:

- Side-effect of drugs, Quality of translated texts, Quality of results of information retrieval
Multi-armed bandits with qualitative feedback

- The set of arms |[K| ={1,...,K} and possible feedback in [L]| (the larger the better).

- An agent plays arm a; € |K] at each round r =1,...,T.

- Playing arm i reveals stochastic feedback X; € [L| ={1,...,L}.

. X; follows categorical distribution P on [L], where

PO =" . PNT PY =P =k

— Since "expected reward" has no meaning, the "best arm" is unclear.

e.g. [Szorenyi+ 2015] considers T-quantile of feedback distributions.
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- The Dueling Bandit <

- Select two arms (i;, j;) at each round t, and observe the result of stochastic dueling.

- Goal: To select the winner, the arm with a high winning probability, as often as possible.

Definitions of Winners: For the winning probability u; ; of arm i over arm j,
- Condorcet winner agyy: The arm satisfies Vi £ aéWv“aéw,i > %
- Borda winner agy,: The arm with the largest average winning probability.
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In the left figure,
» Condorcet Winner is hamburger

« Borda Winner is sandwich
average winning probability:
hamburger=0.555, sandwich=0.595
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The Goal of Dueling Bandits: Minimize the following regrets incurred within T rounds

- Regret of Condorcet winner:

T
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- Regret of Borda winner:

where B; = ﬁij;éiﬂi,j is the average winning probability.

Regret lower bound [Komiyama+ 2015, Jamieson+ 2015
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where AFW = Haz, i — %, APV = B, . —Bi, d(x,y) = xlogf + (1 —x)log %—:Jy‘

Case 1: Condorcet Winner

Algorithm 1: Thompson Condorcet sampling

Thompson Condorcet sampling

: . 1 Play all arms for 7, times each;
— Extension of Thompson sampling

, 2loopt =K1, KT9+1,...
- Estimate the posterior distributions of P with 3 | Estimate posterior distributions of P(:

prior of Dir(1,...,1).
- Sample 0') from estimated posterior distributions.

Sample 8 from the posterior distributions:

if 3i: w(0W,0U)) > 1 for all j € K] then

4
5
: : BETE : 6 P ;
. Play the Condorcet winner in {8} if it exists. i elseay .
. Sample 8') again if the winner does not exists. g | | co to Line 4

Theorem 1 Regret R%W for Thompson Condorcet sampling is bounded as
(1+e)arY
* Dmin(P(i)ap(aéw))

1
logT + O ((loglogT)?) + O (ﬁ) ,

where Dmin(P(i),P(aEW)) measures the gap between two distributions. It can be shown that there
exists { P} which can make d(t; j,1/2)/Dmin(PY, P%cw)) arbitrarily small.
Regret can be arbitrarily smaller than any existing dueling bandit algorithms

Case 2: Borda Winner

Algorithm 2: Thompson Borda sampling

Thompson Borda sampling
1 Play all arms for 7 times each;

2loopt =K1, KT9+1,...
. Play the Borda winner in H(Z) 3 | Estimate posterior distributions of P:

- Similar to Thompson Condorcet sampling

4 | Sample 8% from the posterior distributions;
5 | Let Bi= Y. 1(6",01);
6 ¥P|ay arm arg maxéi;

- No need to re-sample since the Borda winner
always exists.

Theorem 2 There exists distributions such that regret R]%W of Thompson Borda sampling grows
Q(T%) for some o > 0.

hompson sampling does not always achieve R2Y = O(log T)
Algorithm 3: Borda-UCB

1 Pull all arms for 7 times each;

2whiler < T do
3 | Estimate P as p(i);

Borda-UCB
— Extension of the UCB algorithm

- Point estimate of the average winning probability B;.

' 4 | B+ 25 Yic i m(PY, PW);
- Calculate iycg = arg maxB; + ;. 5 | iycp < arg max;c g Bi + Bi;
- If arm iycp is the most played arm, play iycs. : 'fFl)‘IJCB. is most played then
ay lUCB;
- If not, play all arms other than the most played arm. g | glce
9

tPIay all arms other than the most played arm:;

Theorem 3 For appropriately chosen 3;, regret R]%W of Borda-UCB algorithm is bounded as
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for any € > 0, where AEI}V = Zi#aEWA?W, AE}X = min,-#aEWA?W and & is a hyper-parameter.

Borda-UCB matches the regret lower bound in the dueling bandit (1)

Experiments

N J

- Proposed Framework: The Qualitative Dueling Bandit (QDB) Problem-

At each round, play one arm a;, and minimize the same regret as the dueling bandit
T
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where the probability u; ; that arm i wins arm j is defined as
k
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Related work [Busa-Fekete+ 2013| considered this as the special instance of the dueling bandit.

- Observing feedback X;, X; yields accurate estimate of y; ;.
« Utilizing the same algorithm as the existing algorithm to decide which arm to play.

However, if we have access to qualitative feedback, we do not have to conduct "duels"

Contribution: new algorithms without explicit comparison
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Figure 2: The experiment with the Borda winner

Vast improvement on regret compared to apply existing dueling bandit algorithms
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