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Abstract
� �

• Dueling Bandit: The bandit problem where the best arm is defined by pairwise comparison.
• Qualitative Feedback: The feedback that can only be compared. (See problem setting.)� �

• Formulate a new multi-armed bandit problem that handles qualitative feedback.
• Propose algorithms reduce the same regret as the dueling bandits without explicit comparisons.
• Show the superiority of proposed algorithms theoretically and experimentally.

Problem Setting
Quantitative Feedback and Qualitative Feedback� �

Only qualitative feedback is available in:
• Side-effect of drugs, Quality of translated texts, Quality of results of information retrieval

Multi-armed bandits with qualitative feedback
• The set of arms [K] = {1, . . . ,K} and possible feedback in [L] (the larger the better).
• An agent plays arm at ∈ [K] at each round t = 1, . . . ,T .
• Playing arm i reveals stochastic feedback Xi ∈ [L] = {1, . . . ,L}.
• Xi follows categorical distribution P (i) on [L], where

P (i) = (P(i)
1 , . . . ,P(i)

L )>, P(i)
k = P [Xi = k] .

→ Since "expected reward" has no meaning, the "best arm" is unclear.
e.g. [Szorenyi+ 2015] considers τ-quantile of feedback distributions.� �

The Dueling Bandit� �
• Select two arms (it, jt) at each round t, and observe the result of stochastic dueling.
• Goal: To select the winner, the arm with a high winning probability, as often as possible.

Definitions of Winners: For the winning probability µi, j of arm i over arm j,
• Condorcet winner a∗CW: The arm satisfies ∀i 6= a∗CW,µa∗CW,i ≥ 1

2.
• Borda winner a∗BW: The arm with the largest average winning probability.

In the left figure,
• Condorcet Winner is hamburger
• Borda Winner is sandwich

average winning probability:
hamburger=0.555, sandwich=0.595

The Goal of Dueling Bandits: Minimize the following regrets incurred within T rounds
• Regret of Condorcet winner:

RCW
T =

T

∑
t=1

(
µa∗CW,it−

1
2

)
+

(
µa∗CW, jt−

1
2

)
.

• Regret of Borda winner:

RBO
T =

T

∑
t=1

(Ba∗BO
−Bit)+(Ba∗BO

−B jt),

where Bi =
1

K−1 ∑ j 6=i µi, j is the average winning probability.
Regret lower bound [Komiyama+ 2015, Jamieson+ 2015]

liminf
T→∞

RCW
T
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min
j:µi, j≤1

2

∆CW
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d(µi, j,1/2)
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RBO
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where ∆CW
i = µa∗CW,i− 1

2, ∆BW
i = Ba∗BW

−Bi, d(x,y) = x log x
y +(1− x) log 1−x

1−y.� �
Proposed Framework: The Qualitative Dueling Bandit (QDB) Problem� �

At each round, play one arm at, and minimize the same regret as the dueling bandit

RCW
T =

T

∑
t=1

(
µa∗CW,at−

1
2

)
, RBO

T =
T

∑
t=1

(Ba∗BO
−Bat),

where the probability µi, j that arm i wins arm j is defined as

µi, j = P [Xi ≥ X j]+
1
2
P [Xi = X j] ⇔ µi, j = µ(P (i),P ( j)) :=

L
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P(i)
k

(
k

∑
l=1

P( j)
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1
2

P( j)
k

)
.

Related work [Busa-Fekete+ 2013] considered this as the special instance of the dueling bandit.
• Observing feedback Xi,X j yields accurate estimate of µi, j.
• Utilizing the same algorithm as the existing algorithm to decide which arm to play.

However, if we have access to qualitative feedback, we do not have to conduct "duels"
Contribution: new algorithms without explicit comparison� �

Case 1: Condorcet Winner
Thompson Condorcet sampling
→ Extension of Thompson sampling

• Estimate the posterior distributions of P (i) with
prior of Dir(1, . . . ,1).

• Sample θ(i) from estimated posterior distributions.
• Play the Condorcet winner in {θ(i)} if it exists.
• Sample θ(i) again if the winner does not exists.

Algorithm 1: Thompson Condorcet sampling
1 Play all arms for τ0 times each;
2 Loop t = Kτ0,Kτ0+1, . . .
3 Estimate posterior distributions of P (i);
4 Sample θ(i) from the posterior distributions;
5 if ∃i : µ(θ(i),θ( j))≥ 1

2 for all j ∈ [K] then
6 Play arm i;
7 else
8 Go to Line 4;

Theorem 1 Regret RCW
T for Thompson Condorcet sampling is bounded as

E
[
RCW

T
]
≤ ∑

i 6=a∗CW

(1+ ε)∆CW
i

Dmin(P (i),P (a∗CW))
logT +O

(
(log logT )2)+O

(
1

ε2L

)
,

where Dmin(P (i),P (a∗CW)) measures the gap between two distributions. It can be shown that there
exists {P (i)} which can make d(µi, j,1/2)/Dmin(P (i),P (a∗CW)) arbitrarily small.

Regret can be arbitrarily smaller than any existing dueling bandit algorithms

Case 2: Borda Winner
Thompson Borda sampling

• Similar to Thompson Condorcet sampling
• Play the Borda winner in θ(i).
• No need to re-sample since the Borda winner
always exists.

Algorithm 2: Thompson Borda sampling
1 Play all arms for τ0 times each;
2 Loop t = Kτ0,Kτ0+1, . . .
3 Estimate posterior distributions of P (i);
4 Sample θ(i) from the posterior distributions;
5 Let B̂i =

1
K ∑ j 6=i µ(θ

(i),θ( j));
6 Play arm arg max B̂i;

Theorem 2 There exists distributions such that regret RBW
T of Thompson Borda sampling grows

Ω(T α) for some α > 0.
Thompson sampling does not always achieve RBW

T = O(logT )

Borda-UCB
→ Extension of the UCB algorithm

• Point estimate of the average winning probability B̂i.
• Calculate iUCB = arg max B̂i+βi.
• If arm iUCB is the most played arm, play iUCB.
• If not, play all arms other than the most played arm.

Algorithm 3: Borda-UCB
1 Pull all arms for τ0 times each;
2 while t ≤ T do
3 Estimate P (i) as P̂ (i);
4 B̂i← 1

K−1 ∑k∈[K]\{i}µ(P̂ (i), P̂ (k));
5 iUCB← arg maxi∈[K]Bi+βi;
6 if iUCB is most played then
7 Play iUCB;
8 else
9 Play all arms other than the most played arm;

Theorem 3 For appropriately chosen βi, regret RBW
T of Borda-UCB algorithm is bounded as

E
[
RBW

T
]
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BW
all

(
4α

(∆BW
min−2ε)2

logT +O
(

1
ε2

))
for any ε > 0, where ∆BW

all = ∑i6=a∗BW
∆BW

i , ∆BW
min = mini6=a∗BW

∆BW
i and α is a hyper-parameter.

Borda-UCB matches the regret lower bound in the dueling bandit (1)

Experiments

MSLR-10K dataset� �
Information retrieval (IR) dataset which contains

• Features of a document-query pair
• User-labeled relevance (1–5)� �

Experimental Setting� �
Task: choose the best IR algorithm
At each round t:

• An agent selects at from 5 algorithms.
• Query qt is sampled randomly.
• Algorithm at returns document d.
• The relevance of q and d is revealed as
qualitative feedback.

→ The QDB problem with K = 5 and L = 5
� �
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Figure 1: The experiment with the Condorcet winner
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Figure 2: The experiment with the Borda winner
Vast improvement on regret compared to apply existing dueling bandit algorithms
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