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Abstract Proposed Method: LinGapE

- Proposed a new adaptive algorithm for best arm identification in linear bandits, LinGapE Algorithm 1: LinGapE
(Linear Gap—based Exploration). LinGapE = Linear Gap'based Exploration Get an initial estimation 0y by pulling each arm once.;
- Derived the sample complexity of LinGapE, which matches the sample complexity of an oracle Stopping condition: Loop ¢ = K, K41,...

algorithm up to a constant in some limit. - Based on the confidence bound in (2). // Nominata (i;, 5;) for candidates

o . . . o . . . . '+, jt, B(t) ¢ Select-direction(d;);
- Showed superiority of LinGapE through experiments based on synthetic and realistic settings. - Valid for adaptive strategies as well. it, ji» B(#) 4= Select-direction(0;)

P ro b l em S etti N gs Arm selection strategy:

At each round ¢, repeat the following.

if B(t) < e then

tReturn 1; as the best arm a*;

// Pull arms for estimating the gap of them

-~ Linear Bandits N - Nominate two arms i, J;.

S Select the arm a;; based on (5);
- The set of arms [K| =1,2,..., K and the features of arms x1, x5, ..., Tx € RA . Pull the arm a, that discriminates i, j, the most.

Pull arm a;,1 and update estimation 6,,1;

- At each round ¢, an agent pulls one arm a; € | K| and observes reward ;.

- Rewards 7 is determined as r; = ailﬂ +e. The algorithm fOr nominating it, jt

. ¢ [R-sub-Gaussian noise

. 9: unknown parameter with ly-norm at most S Arm 4, is the estimated best arm, and arm j; is the arm that is the most likely to surpass ;.

Algorithm 2: Select-direction

- The best arm a* = arg max; z, 0

1 1
N Procedure Se/ect—direcl:ion(ét): Bi(3, §) = ||z — xjH(A)\)—l R\/2 log det(Ai‘)idet()\])_i . )\%S
- (¢,0)-Best Arm ldentification Problem \ iy = arg maXie() (%, 01); t 0
: N o T T ey Ji < arg maX;erx)(Ai(J, 4) + Be(J, it)): ;
Goal: Find an arm a satisfying P|x,.00 — 2, 0 > | < ¢ within a small number of rounds. B(t) + max;eix (A4, ir) + Bud, it); At(z i) = (; — x_)Tét AN = AT & Zx -
\ — Need to design an arm selection strategy and a stopping condition. )  Return iy, ji, B(1); | S t 1 e

Applications: Optimizing sensor network, automatic parameter tuning [2] The algorithm for Selecting at—l—l

Characteristic: Pulling sub-optimal arms can lead to efficient exploration.
- Compute the optimal arm selection ratio {pj(4, j) } xe(x) for discriminating arms 4 and j by

i — I3 Under the current estimation ét of 6, arms 1 and 2 have K K
high expected rewards. {pZ(iaj)}kE[K] = E?”g}miﬂ |z — SEJH/Q\;l S.T. Zpk =1, pe 20, Ay = Zpkxkx,;r, (4)
Dk s ke[K) k=1 k=1

« We can directly estimate the gap between these expected _ _
which can be solved by the linear program.

rewards by pulling arm 3. _ _ -
- a;41 is decided based on 7, j; as follows.

At = arg min Ta(t>/p2(it7 jt)7 (5)

Confidence Bounds e 0

where T;,(t) is the number of times that arm a is pulled until round t.

There are two types of the confidence bounds on 6 for sequence of arm selection x,, = (24, ..., %4 )
and Ay =0 xox), by =30 T, - :
et D | Theoretical Analysis
- Confidence Bound for Static Strategies [3] \
For any fixed sequence x,, if noise variable ¢ is bounded ¢ € [—R, R|, (which is R-sub-Gaussian) ~ Theorem 1: Sample Complexity of LinGapE )
R R 2R* K* - . L
‘xTQ B :CTHn\ < QRHQ?HA;\/Q log (602K /(572)), 6, = A;bxn (1) If A < =5 log =, then the number of samples 7 of LinGapE satisties
" " B 2 ) K x /- ..
holds for all n € N and all z € {x;}*, with probability at least 1 — ¢ for ||z||4 = Va T Ax. P|r < 8H.R’ 1QgK7 +C(H.,0)| >1—0, H.=)» max pk(z’])p(l’]l 3
N\ J w : '
. . - u i k=1 ZJE[K] : 5+A17 e+ J
- Confidence Bound for Adaptive Strategies [1] \ e (5 8 )
For any arm selection sequence x,, and Af(n = A + Ay for A >0, where C'(H.,d) = O (dHe log (He log %)) and p(7, j) is the optimal value of (4).
- J
270 — 270 < RHwH(Aén)l\/Q 10g(det(A§n)%K/()\%5)) + A8, 0 = (Ain)_lbxn (2) As shown above, looseness of O(v/d) does not affect the main term. Furthermore, the following
holds for all n € N and all z € {x;}:*, with probability at least 1 — ¢. statements holds for F/°* in (3);
N y

H. <72KH™®  H. — 72H°"® (A /A; = 0).

The performance of LinGapE matches the oracle algorithm in this limit.

Experiments

(2) is valid for adaptive strategies, but looser by |/log(det(A3 )) = O(Vd).

Prior Methods

- Work by Soare et al. [3] \
- Constructs a stopping condition based on (1) to avoid O(v/d) looseness of (2). - Synthetic setting used in [3]: )
= Proposes static and semi-adaptive arm selection strategies which make (1) valid. + The number of arms is K = d + 1, where features are
- Derives the lower bound of sample complexity for static strategies. T1 =€y, Ty =€, ..., Tq = €4, Tq41 = (cos(0.01),sin(0.01),0,... ,O)T-
. . - Set 6 = (2,0,...,0)". XY-adaptive
Arm selection strategies: - - | - ——
- X V-static: Fix all arm selection before observing any samples. - 210 =2vs. 25,0 = 2cos(0.01) = 1.9999. PO S S g
. Arm selection strategy based on the literature of transductive experimental design. - Arm 2 can discriminate arms 1 and d + 1. gé_t l_ XYSteltlc
. Cannot change arm selection adaptively based on rewards. - LinGapE mostly select arm 2. gk:: _________ l XY-oracle
- X' V-adaptive: Semi-adaptive algorithm that adaptively changes static arm allocations. . Thus, det(A?(n) = o(n"), which makes (2) tight. 2 S
. Divide _rounds into multiple phases,. emplo.y different arm allocations in different phases. . LinGapE stops faster than X' V-oracle. T ominaton of reatare spced | [inGanE
. Must discard all samples collected in previous phases for the validity of (1). 5 )
- Setting based on Yahoo! Webscope Dataset R6A [4]: \

Lower bound of static strategies:

. The lower bound is Q(H*% log 1/5), where Ho* is defined as - Consists of pairs of user-article feature x and target y (y = 1 if seen, and y = 0 otherwise).

x107

- Relatively high-dimensional data (36-dimensional).

| H:ECL* T aji”?\—l K K T : i . i ] T _ 20 XY -static e
He?® = { H}}in .6[1}(1]%?(*} A2 g, Zpk, =1,p.>0,A, = Zpk;,;k;,;k (3) - Estimate 0 by linear ridge regression in y = 2 ' 6. £l ,,1"’
(4 a . . . . o Z
PRIkEl) ! k=1 k=1 - Run simulations based on the estimated 6. g <
_ T T _ _ _ s -
for Aj = 2.0 — ;0. - 5 times less observations compared to X')/-static. gl ‘ LmAGapE
- Lower bound is derived by considering an oracle algorithm, X" Y-oracle. . Less dependent on K compared to X' )-static. 8 l/—*//
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) does not harm performances empirically.
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